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1. Review of Previous Results
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Serendipity Finite Elements

Serendipity Space. The serendipity space S-(I"™) is the space of all
polynomials in n variables with superlinear degree at most r.

Degrees of freedom (DoFs).

i [ 4 € B2

Geometric Decomposition.
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Serendipity Finite Elements

Properties.

e Hl-conforming
o Approximate to O(h"t1) with minimal number of DoFs

Problem. Lose accuracy when mapped to a quadrilateral or a general
cuboidal hexahedron

Goals. Define direct finite element spaces that

e Include polynomials P, directly in the space (for approximation)
e Use minimal number of DoFs

Previous Work.

e Construct the direct serendipity and mixed finite elements on
quadrilaterals (Arbogast, Tao, & Wang 2022)
e Generalize to convex polygons (Arbogast & Wang 2022)
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2. Direct Serendipity Finite Elements
on Cuboidal Hexahedra

DSy(E) =Pr(E) @ Sp(E)

Polynomials plus supplements

The University of Texas at Austin

Oden Institute for Computational Finite Element Rodeo,March 24—25, 2023
Engineering and Sciences



Indexing
Fi=En{z=-1}5f,1, A=En{Z=1}-5f,

fo=En{i=-1}5 7, f=En{g=1}5 f,
Fs=En{z=-1Y"5fs FH=En{z=1}% fs.

(-1,-1,1) (-1,1,1)

(17 _1a 1

1-1.-D @i

eij =fiNfi, er=fiNf, er=FfN0fe, Vijp=FL0f0fr.
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Minimal DoFs for Hl-conformity

Degrees of Freedom. Evaluation ¢(v) at all the vertices v, and for all
the edges e and all the faces f,

[0 VaePo(e),  [éq VaePa(), [ 64 VaEPro(E).

DoFs Counting (r < 3).

b _ |8=dimP(E) +4, if r=1
" 120 =dimPy(E) + 10, ifr=2

DoFs Counting (r > 3).

Dimension Object Number DoFs/Object Total DoFs
0 vertex 8 1 8
1 edge 12 dimP,_»(R) 12(r — 1)
2 face 6 dimP,_4(R?) 3(r =2)(r = 3), if r>2
3 interior 1 dimP, 6(R3) 2(r—3)(r—4)(r—5),ifr >3

We must add 3(r+1) supplements to P,
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Special Functions

Linear Functions.
1. A\p, fOr n = 41,42, +3:
An(x) = —(x —xy¢,) - vn
where x¢ € fn, and vy is the unit outer normal to face fy.
2. For Az, Ay, and Xz, denote the zero plane of Ay« as Px:
e 7, intersects e4o 43, P, intersects e4q 43, 7. intersects e41 4o
e P, Py, and 7. do not coincide

Special maps.

—1, on f_
Rq;={ : f-1

17 on fla




Generalization of the Supplements — 1

3(r — 3) face supplements. For s =0,1,...,r — 4,
(1-— y2)(1 A2)A3Ar—4—85 = ¢£,s = )\_2>\2>\_3}\3)\§)\2—4—8Rx
(1— 552)(1 — EQ)ASAT_LL_Sg - ¢5 = A_1\A_ 3)\3>\s>\r—4—sRy
(1-2)(1—g)FF 42 = L = A 1MA 20N R,

12 edge supplements. If : = +1 and 3 = £+2, the two edge basis
functions gb,fj.s for s=1r —3,r — 2 are defined as

SR 1 _ _ . N~ . N~
075;s(%,9,2) = 7 2°(1 = 2%) (1 + sign()7) (1 + sign()7)
The 4 functions with s = r — 2 involve 3 supplements
(1-29)2""2%% = ¢%1=2A_3\3\ “R,

(1-292"7%) =  ¢fr=2A 3N\ R,
(1—32)z"" 2““ = ¢C3 = A_3A3)\] “R.R,

The definition of gbx 1) 372, 373, 571, 52, € 3 follows by symmetry.

However, the last 3 supplements (1 — 22)z" 332, (1 — 32)g5" 322, and
(1 — 22)z" 37z related to s = r — 3 do not generalize naturally.
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Generalization of the Supplements — 2

Idea. The restriction of the supplements to each face f should fall into
the D87(=2)(f) defined on quadrilateral (Arbogast, Tao, & Wang 2022)

Supplemental functions.

B4 = A_1MN Pn,  B5a = A0 Ty, 654 = A_3A3\l P,

Requirements of v, vy, and 1, on faces.

Yzl uf 53 =0 bylp qup 5 =0 Yalf qup , =0
¢$|€2,3 =1 ¢y|€1,3 =1 QﬂZ|€1,2 =1
Vo|r, € P1 @ { Az Rz} ylp € P1 @ {Ny Rz} Yzl r, € P1 @ {A2Ry}
Y|, € P1 @ { ARy}  Yylp, € P1 D {AyRay} Yzl € P1 & { ARz}
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Define vy, vy, and . in the Interior — 1
Pullback map.

¢£C,2 — ¢33|f2
1%,3 — ¢$|f3

wx(x) — {p\x(i) — {D\iﬂ(é}a g) 2) — wx,Q(FE(£7 17 2)) wx,3(FE(£ag7 1))

(_17_171) (—1,1,1)
(17 _1a 1)/
Fg
E —
L Y
(_17_17_1)/(_1,1,—1)
(1,-1, —1.5 (1,1,-1) Vi1,-2,-3 V12,-3
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Define vy, ¢y, and ¢, in the Interior — 2

Piecewise polynomials.

1. Marching tetrahedra:

V1,23 V123

Vi1,2,-3

2. The diamond cubic based partition:

Vi1-23 V123 Vi-23 V123

oo
.........
Y
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Shape functions
Vertex basis functions.

7Jk_)\ )\_j)\ k-EIP)r,

Cell basis functions.

A_1AIA_2A2A_3A3 g € Pr

Face basis functions. Face basis functions corresponding to Ps(f)

o lieinP. fors<r-—5

e are linear combinations of p € P, and supplements for s=r —4

Edge basis functions. Edge basis functions

o liein P fors<r—4

e are linear combinations of p € P and supplements for s=r —3,r — 2
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Remarks

Lower dimensional spaces. For r = 1,2, DS,(E) C DS3(FE).
Unisolvence. Unisolvence lies in the construction of shape functions.

Conformity. For any two adjacent elements sharing a common face f,
we ask
e The zero planes of Az, Ay, or A; that intersect f coincide on f;
e Ry, Ry, and R, agree on f:
e Marching tetrahedra: agree on the common faces naturally;
e Diamond cubic: the two patterns must be used alternately by
adjacent elements.

Remark. To form a global Hl—conforming basis, either solve a small
linear system to match DoFs or use nodal DoFs instead.
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3. Summary and Conclusions
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Summary and Conclusions

1. Conforming finite elements are important in many areas.

e Solving PDEs in certain applications.
e General interpolation and approximation of functions.
e Visualization.

2. Direct serendipity finite elements developed for cuboidal hexahedra.
° Hl-conforming and fully constructive. Keys to the construction:

e Form higher order spacesr >3 tor=1, 2.

e Cell and vertex shape functions are straightforward.
e Face and edge shape functions require supplements.
e DS, (FE)|; coincides DS7(~2)(f) .

e Minimal DoFs and approximate optimally on shape regular meshes.
e NO accuracy loss due to reference element mapping.

3. Future work

e Applications.

e De Rham complex and direct mixed finite elements for cuboidal
hexahedra.

e Extension to more general 3D polytopes.
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